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Section 5.3

(3) Define a sequence {xn} be |f(xn+1)| ≤ |f(xn)|/2 where x1 ∈ [a, b] is arbitrary. We have
|f(xn)| ≤ |f(x1)|/2n−1, and so limn→∞ |f(xn)| ≤ limn→∞ |f(x1)|21−n = 0. By Bolzano-
Weierstrass, there is a subsequence {xnj} converging to some z ∈ [a, b]. By continuity, f(z) =
limj→∞ f(xnj ) = 0. (Note that {an} tends to 0 if and only if {|an|} tends to 0.)

(5) p(−10) = 2991, p(0) = −9, and p(2) = 63. By the theorem on Existence of Zeros, there is a
zero in (−19, 0) and another in (0, 63).

(6) The function g satisfies g(0) = f(0)− f(1/2) and g(1/2) = f(1/2)− f(1) = f(1/2)− f(0) =
−g(0). It is also continuous on [0, 1/2]. If g(0) = 0, we are done. If g(0) 6= 0, g(0)g(1/2) =
−g(0)2 < 0, so the desired conclusion comes from the theorem on Existence of Zeros.

Note. Borsuk-Ulam Theorem asserts that any continuous mapping F from the unit sphere

S =
{
x ∈ Rn : x21 + x22 + · · ·+ x2n = 1

}
,

to Rn satisfies the following property: There exists a point p ∈ S so that F (p) = F (−p). This
exercise is essentially the case n = 1.

(12) The function g(x) = cosx − x2 satisfies g(0) = 1 > 0 and g(π/2) < 0, so there is some
x0 ∈ (0, π/2) such that g(x0) = 0. Since cosx is strictly decreasing and x2 is strictly increasing
on [0, π/2], g is strictly decreasing and x0 is the unique zero for g. It means g(x) > 0, that is,
cosx > x2 on [0, x0) and g(x) < 0, that is, cosx < x2 on (x0, π/2]. It implies f(x) = cosx on
[0, x0) and f(x) = x2 on (x0, π/2]. The conclusion comes from the fact that cosx > cosx0 on
[0, x0) and x2 > x20 on (x0, π/2].

Supplementary Exercise

1. Let f be continuous on [a, b]. For x1, x2, · · · , xn ∈ [a, b], show that there is some ξ ∈ [a, b]
such that

f(ξ) =
1

n
(f(x1) + f(x2) + · · ·+ f(xn)).

Is the conclusion still valid when [a, b] is replaced by (a, b)?

Solution. The continuity of f on [a, b] implies that the range of [a, b] under f is the interval
[m,M ] where m and M are respectively the minimum point and maximum point of f .
Now, m ≤ f(xj) ≤M for j = 1, · · · , n implies

m ≤ 1

n
(f(x1) + · · ·+ f(xn)) ≤M,

so the point ((f(x1) + · · · + f(xn))/n belongs to [m,M ], the range of [a, b] under f . The
desired conclusion follows.

The conclusion still holds when [a, b] is replaced by (a, b). Just consider the interval [x1, xn]
where x1 ≤ x2 ≤ · · · ≤ xn.
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2. Let h be an increasing function on some interval (a, b), that is, h(x) ≤ h(y) for x ≤ y.

(a) Show that limx→x+
0
h(x) and limx→x−

0
h(x) always exist for every x0 ∈ (a, b).

(b) Show that h is continuous on [a, b] if and only if the range of h is [h(a), h(b)].

(c) Optional. Show that if for a given number k > 0, the set {z ∈ (a, b) : limx→z+ h(x)−
limx→z− h(x) ≥ k} is a finite set.

(d) Optional. Deduce from (c) that h has at most countably many points of discontinuity.

Solution. (a) Claim α ≡ sup{h(x) : x ∈ [a, x0)} is the left hand limit and inf{h(x) : x ∈
(x0, b]} is the right hand limit. Since h is increasing, we have h(x) ≤ h(b) which means α
is a finite number. To prove it is the left hand limit of h at x0, we need to show, for ε > 0,
there is some δ such that |h(x) − α| < ε for x ∈ (x0 − δ, x0). By the definition of α, for
ε > 0, there is some h(x1), x1 < x0, such that h(x1) + ε > α. By monotonicity, it follows
that h(x) + ε ≥ h(x1) + ε > α for all x, x ∈ [x1, x0), so |h(x) − α| < ε, done. The right
hand limit can be treated in a similar manner.

(b) When h is continuous on [a, b], its range is equal to [m,M ] where m and M are respec-
tively the minimum and maximum of h. As h is increasing, [m,M ] is equal to [h(a), h(b)].
On the other hand, if h is not continuous at some x0 ∈ (a, b), limx→x−

0
h(x) < limx→x+

0
h(x)

according to (a). Then any point k satisfying limx→x−
0
h(x) < k < limx→x+

0
h(x) lies out-

side of the range of h, hence [h(a), h(b)] cannot be an interval. The case of possible
discontinuity at a or b can be treated similarly.

(c) Suppose there are N many points in this set. By monotonicity,

Nk ≤
N∑

n=1

(
lim

x→x+
j

h(x)− lim
x→x−

j

h(x)

)
≤ h(b)− h(a),

which imposes the following bound on N :

N ≤ h(b)− h(a)

k
.

Hence this set is finite for each given k.

(d) Let En = {z ∈ (a, b) : limx→z+ h(x)− limx→z− h(x) ≥ 1/n}. By (a), any discontinuity
of h belongs to some En. Therefore, the discontinuity set which is equal to ∪∞n=1En is a
countable set.

Note. We will discuss this problem in class.
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Existence of Zeros for Continuous Functions

We give a proof of the theorem on the existence of zeros different from the bisection method.
Proposition 1 will be used many times in this course and 2060.

Proposition 1. Let f be defined on (a, b) and continuous at x0 ∈ (a, b). When α = f(x0) > 0,
there is some small δ > 0 such that f(x) > α/2 for all x ∈ (x0 − δ, x0 + δ). When f(x0) < 0,
there is some small δ > 0 such that f(x) < f(x0)/2 for all x ∈ (x0 − δ, x0 + δ).

Proof. Let ε = α/2. There exists some δ > 0 such that |f(x) − f(x0)| = |f(x) − α| < α/2 for
all x ∈ (x0 − δ, x0 + δ). (We could choose δ so small that this interval is included in (a, b).) It
follows that f(x)− α > −α/2, that is, f(x) > α/2, on this interval.

Here are some remarks.

• First, by choosing a smaller δ, (x0− δ, x0 + δ) could be replaced by [x0− δ, x0 + δ]. Second,
it means in particular that f > 0 on (x0 − δ, x0 + δ).

• When f is right hand continuous at x0 ∈ [a, b) or left hand continuous, the conclusion
holds on [x0, x0 + δ] or [x0 − δ, x0] repectively.

• Similar results hold when f(x0) < 0. Simply consider −f .

Theorem 2. Let f be continuous on [a, b] satisfying f(a)f(b) < 0. There exists some c ∈ (a, b)
such that f(c) = 0.

Proof. Without loss of generality assume f(a) < 0 and f(b) > 0. Consider the set E = {c ∈
[a, b] : f > 0 on [a, c]}. By Proposition 1, f is positive on [a, a + δ] for some small δ. Hence
E is nonempty by taking c = a + δ. On the other hand, E is bounded above by b. By Order-
Completeness Property, ξ = supE ≤ b exists. By the definition of supremum, we can find a
sequence zn ∈ E such that limn→∞ zn = ξ. By continuity, 0 ≥ limn→∞ f(zn) = f(ξ). On the
other hand, if f(ξ) < 0, Proposition 1 asserts that f(x) < 0 for x ∈ [ξ−δ1, ξ+δ1] for some small
δ1, thus f < 0 on [a, ξ+ δ1], contradicting the fact that ξ is the supremum of E. One must have
f(ξ) = 0.


